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Abstract

Proposed missions to explore comets and moons will
encounter environments that are hostile and unpre-
dictable. Any successful explorer must be able to
adapt to a wide range of possible operating condi-
tions in order to survive. The traditional approach of
constructing special-purpose control methods would
require information about the environment, which is
not available a priori for these missions. An alter-
nate approach is to utilize general control with sig-
nificant capability to adapt its behavior, a so called
adaptive problem-solvingmethodology. Using adap-
tive problem-solving, a spacecraft can use reinforce-
ment learning to adapt an environment-specific search
strategy given the craft’s general problem solver with
a flexible control architecture.

Introduction
Because of light-time communication delays, exploration
missions require an autonomous explorer that can adapt to
handle possible environments. For autonomous planning
systems, the high-level actions of the spacecraft must be
planned with sufficient environmental information to en-
sure that the resulting plans are admissible. A spacecraft
could easily be lost based on inappropriate behavior in a
particular environment due to overly-generic control meth-
ods (Minton 1996).

On the other hand, developing and testing domain-
specific control methods is extremely difficult, and requires
support of a domain expert. Moreover, the domain expert
must have knowledge about the environment in which the
spacecraft is operating, which is not available before the
spacecraft arrives at the location to explore. If experts are
not available, the spacecraft must be able to automatically
adapt a flexible control structure specific to the new envi-
ronment.

Adaptive problem solvingaddresses these problems by
enabling the development and maintenance of effective

control strategies without extensive domain-specific knowl-
edge. An adaptive problem solver is given: (1) a generic
set of control strategies and (2) a flexible control archi-
tecture, and uses a statistical method to estimate the qual-
ity of each control strategy or generate a more appropriate
strategy. Adaptive problem solving also provides hard sta-
tistical guarantees on the quality of the behavior for each
adapted control method. Using adaptive problem solv-
ing techniques, spacecraft exploration in unknown environ-
ments becomes feasible.

In this paper, we describe how adaptive problem solving
can be used to adapt the control methods of a spacecraft
in-situ. The value of this method is empirically shown in
the context of two spacecraft operations scheduling prob-
lems in a generic planning and scheduling environment. By
adapting control strategies for each domain, the lifespan
of the spacecraft is improved since the adaptive problem
solver can increase chances of spacecraft survival and con-
tinue to update the control methods based on aging hard-
ware or environmental changes.

Motivational Example
The comet lander will land on a surface of unknown den-
sity, with the goals of drilling into the comet90% and imag-
ing its surroundings10% of the time allocated to accom-
plishing goals. Situations will force these percentages to
be innapropriate. One scenario might be that the surface
of the comet is much denser than expected, so the rate of
drilling is decreased and the wear on the drill is increased.
The lander might need to adjust its priorities to take more
images instead of drilling. Another scenario might be that
drilling caused a layer of dust on the surface to drift up, the
dust might limit the visibility of the lander. Taking images
might be ineffective, so the lander might want to delay its
drilling activities until the dust settles, or take images be-
fore drilling.

Failure to adapt to these situations could cost the lander
the mission, by depleting resources too rapidly, not accom-
plishing mission objectives, or wearing out equipment. Not
all possible situations can be enumerated before the mis-



sion; instead an adaptive problem solver checks the cur-
rent control strategy’s performance in the given environ-
ment and responds to changes by adapting the control strat-
egy, independent of the cause of the change. An adaptive
problem solver would continually adapt the control strategy
if it found the current strategy non-optimal.

Planning System
The planning and scheduling system used to evaluate the
control strategies for each model is a version of the AS-
PEN (Automated Scheduling and Planning ENvironment)
system (Fukunagaet al. 1997). ASPEN is a config-
urable, generic planning/scheduling application framework
that can be tailored to specific domains to create feasible
schedules.

ASPEN employs planning and scheduling techniques
to automatically generate a necessary activity sequence to
achieve the mission goals. This sequence is produced by
utilizing an iterative repair algorithm (Zwebenet al. 1994)
which classifies conflicts and attacks them individually.
Conflicts occur when a plan constraint has been violated
where this constraint could be temporal or involve a re-
source, state or activity parameter. Conflicts are resolved by
performing schedule modifications such as moving, adding,
or deleting activities. The target of the repair modification
is chosen by a heuristic method, and the point in the search
where this choice is made is called a choice point. For each
type of choice point, the user creates a set of heuristic meth-
ods to use with varying usage weights. The set of heuristic
methods impacts the outcome of the schedule, and effec-
tively controls the behavior of the spacecraft.

The control strategies for adaptive problem solving are
represented as sets of weighted heuristics so that they may
be robust enough to perform well over the entire problem
distribution even when they are slightly suboptimal, as op-
posed to a single heuristic which may not be as flexible to
environment or hardware changes.

The quality of a resulting schedule generated by ASPEN
is measured by a set of preferences specified by the user.
This set of preferences specifies the quality functions asso-
ciated with certain parameters in the schedule.

Adapting Control Strategies
To adapt control strategies, we can search the neighbor-
hood of a current strategy, and select higher-scoring strate-
gies. Given a set of possible control strategies, the adap-
tive problem solver selects the top strategies based on col-
lecting samples of spacecraft performance in the current
environment by running ASPEN evaluating the resulting
schedule. The top strategies are returned to the search algo-
rithm, which produces a subsequent set of hypotheses based
on previously selected hypotheses using algorithm-specific
techniques. This cycle continues until a certain amount of
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time has passed or another stopping criterion of the specific
search algorithm has been met (see figure 1).

Adaptive Problem Solving
The adaptive problem solver attempts to select the top
strategies from a set of strategies, supplied by the search
algorithm, whose quality is a function of unknown parame-
ters. It makes estimates of the parameters for strategy utility
and sample cost in order to achieve a requested accuracy
for a statistical decision requirement. The adaptive prob-
lem solver iteratively refines the utility and cost parameter
estimates by acquiring training examples and reevaluating
utility and cost (see figure 2).

The normal parametric model for reasoning about sta-
tistical error is used in this analysis, which assumes that
the difference between the expected utility and estimated
utility of a hypothesis can be accurately approximated by
a normal distribution. This assumption is grounded in the
Central Limit Theorem and is further discussed in (Chien
et al. 1995). The analysis would change given a different
parametric model, but the results should be analogous for
conventional models.

Since parameter estimates are refined by random sam-
pling, it is impossible to place perfect accuracy require-
ments on the selection algorithms. In practice, probabilistic



requirements, ordecision criteria, on the relative accuracy
of the parameter estimates (and subsequent strategy selec-
tion) are chosen as parameterized forms that allow a trade-
off between accuracy and cost.

Specifically, decision requirements take a set of hypothe-
ses and a probabilistic error bound, and terminate when one
of the hypotheses can be shown to have the greatest mean,
evaluated through pair-wise comparisons, with a confidence
higher than the given confidence level. The overall confi-
dence for selection is a function of the confidence of each
pair-wise comparison. Rational analysis can be used to al-
locate error to each pairwise comparison in such a way as to
attempt to optimize the resource usage necessary to acquire
a sufficient number of samples across the comparisons to
achieve the decision requirement (Gratch & DeJong 1994).

In this analysis, the decision requirement that is used in
the adaptive problem solver is the probably approximately
correct (PAC) requirement. The choice of using PAC in this
analysis is mostly based on its prevalence rather than spe-
cific attributes of the requirement. The expected loss deci-
sion requirement was evaluated and found to have minimal
impact on the outcome.

PAC Requirement
In order to satisfy the PAC requirement, the hypothesis es-
timated to be the best must be within some user-specified
constant� distance of the true best hypothesis with prob-
ability 1 � Æ. The sum of the error from each pair-wise
comparison is bounded by this probability. LetHsel be the
expected utility of the selected hypotheses andHi be the
expected utility for the remaining hypotheses. LetĤ be
the estimate of the expected utility of a hypothesis. It is
sufficient to bound the probability of error in selection for
pair-wise comparisons with the following equation:

k�1X
i=1

Pr[Ĥi < Ĥsel � �jHi > Hsel + �] � Æ (1)

Thus the problem of bounding the overall error reduces
to bounding the error of eachk�1 comparisons of the cho-
sen best hypothesis to the rest of the hypotheses.

The normality assumption reduces equation 1 to a func-
tion of the parameter estimates, the number of examplesn

used to refine the estimates, the closeness parameter�, and
an unknown variance term�2. The two stopping criteria
for selection aredominance, which is based on achieving a
probability (Æ) through sampling thathi will perform bet-
ter on a specific problem thanhj , andindifference, which
is the probability that the difference between performances
will fall within � of 0. For the rest of this discussion,�
is ignored to simplify understanding. The equation for the
probability of incorrect selection for a pair-wise compari-
son,�i, is:

�i = �

0
@�(Hsel �Hi)

p
nq

�2sel;i

1
A (2)

We can use this relationship to determine how many
training examples to allocate to each comparison, given the
error bound on the probability of a mistake, an estimate
of the difference in expected utility, and an estimate of the
variance of each hypothesis:

nsel;i =
�2sel;i

(Hsel �Hi)2
[��1(�i)]

2 (3)

Rational Analysis
The hypothesis selection algorithm as presented does not
take advantage of unequal distribution of error. By dis-
tributing error unequally across the pair-wise comparisons
using the estimates of the sample cost and utility parame-
ters, we can attempt to satisfy the requirements using the
minimum possible cost. The general idea of rational anal-
ysis is to choose the error�i for each comparison to mini-
mize, subject to the given decision requirements:

k�1X
i=1

csel;insel;i

The algorithm must only ensure that thesumof the errors
remains less than the given bound. If one pair-wise com-
parison requires many more samples to achieve the same
amount of accuracy as another comparison, then if the first
is allowed to have more error and the second is allowed less,
the overall cost of achieving those local requirements might
be reduced. In practice, this method significantly reduces
the number of samples necessary to achieve the require-
ment for certain domains, as shown in (Gratch & DeJong
1994).

Adapting Hypotheses
In order to adapt hypotheses, search algorithms are used to
generate hypotheses in the neighborhood of the given hy-
potheses. At each level of search, an adaptive problem solv-
ing algorithm is used to evaluate the competing hypotheses
with a given confidence bound.

Local Beam Search
One algorithm used to generate and search over hypotheses
is local beam search (Russell & Norvig 1995). In a flex-
ible planning and scheduling domain, each hypothesis, or
combination of heuristics, can be represented as a vector of
percentages where the percentages of heuristics associated
with a certain type of choice point in ASPEN sum to100%
(see figure 3). A random heuristic is included for each plan
problem. The basic algorithm is included below.
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Figure 3: Hypothesis Vector Diagram

We chose a neighborhood of a vector to be defined as, for
each subset of heuristics associated with a certain choice
point, changing one of the usage percentages by a certain
range, and scaling all of the other usage percentages equal
amounts so that the sum is still100% (see figure 3). Let
l be the bound on the number of hypotheses the adaptive
problem solver can evaluate.

Genetic Algorithm

Another algorithm that is used to generate hypotheses is
a genetic algorithm (Goldberg 1989). Each hypothesis is
represented as a vector of percentages, as in the local beam
search. The three general operators (crossover, mutation,
and reproduction) are used to generate the next set of hy-
potheses to search over, and ranking the hypotheses is done
using adaptive problem solving. The crossover operator is
not aware of the different subsets of heuristics, and may
choose to split within one of those subsets. Mutation also
works without knowledge of the constraint that subsets
must sum to100%, so each subset is scaled to 100 uni-
formly after the mutation operator is run. The basic algo-
rithm is shown below.

Method Implementation

An adaptive control system of this type can be used in mis-
sion operations in multiple capacities. It can be used from
the start to design spacecraft constraints and payload, by
evaluating each of the potential designs against possible en-
vironments and comparing results. It can be used on the
ground to perform mission planning and during flight to
quickly develop new schedules based on changing domains
or spacecraft deterioration. Environmental constraints for
the spacecraft, such as the density or temperature of the sur-
face for a lander, can be determined when they are available
to the spacecraft. These constraints can be used to update
the model of the environment, and adaptive problem solv-
ing can be used to efficiently determine the optimal plan-
ning heuristics for the current environment.

Empirical Evaluation
We claim that hypothesis adaptation can efficiently find a
better set of hypotheses in a given domain. In this sec-
tion we provide evidence that in practice, these methods
can generate heuristic sets superior to those generated by
model experts.

The test of real-world applicability is based on two do-
mains related to planned space missions, using the ASPEN
planning and scheduling system. The original set of hy-
potheses that is used is the set of heuristic combinations
currently in use in these and related models. We hope this
illustrates how this type of method can be useful in real-
world domains, by improving on control strategies already
in use or updating the strategies to handle domain shifts.

Evaluation
New Millennium EO-1 Domain – New Millennium Earth
Observer 1 (EO-1) is an earth imaging satellite featuring
an advanced multi-spectral imaging device. EO-1 mission
operations consists of managing spacecraft operability con-
straints (power, thermal, pointing, buffers, consumables,
telecommunications, etc.) and science goals (imaging of
specific targets within particular observation parameters).
The EO-1 domain models the operations of the EO-1 op-
erations for a two-day horizon (Sherwoodet al. 1998). It
consists of 14 resources, 10 state variables and 38 differ-
ent activity types. Each EO-1 problem instance includes
a randomly generated, fixed profile that represents typi-
cal weather and instrument pattern. Each problem also in-
cludes 3 to 16 randomly placed instrument requests for ob-
servations and calibrations, and between 50 and 175 com-
munications satellite passes.

The score for EO-1 includes preferences for more cali-
brations and observations, earlier start times for the obser-
vations, fewer solar array and aperture manipulations, lower
maximum value over the entire horizon for the solar array,
and higher levels of propellant.

Applying the quantile-quantile (Q-Q) test to the EO-1
hypotheses shows that they are very likely normal distribu-
tions. The Q-Q test compares the quantiles of the samples
with a normal distribution, and departures in linearity of the
resulting plot show how the samples differ from a normal
distribution. Results of applying the Q-Q test to these two
domains are shown in (Gratch & DeJong 1994).

Figures 4 and 5 show scores of the generated heuristic
combinations over 35 cycles of the search algorithms. Al-
though the curves for the scores of the two different search
algorithms are different, the percentage of improvement for
the high scoring hypothesis within each cycle is similar
(128% for the linear search compared with147% for the
genetic algorithm). The percentage improvement for the
mean score is somewhat greater,161% for the genetic al-
gorithm compared with116% for the linear search. The
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Figure 4: EO-1 model search iteration maximum and aver-
age scores for 35 iterations of the local beam search (beam
= 2).
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Figure 5: EO-1 model search iteration maximum and aver-
age scores for 35 iterations of the genetic algorithm search.

high scoring heuristic combinations are also somewhat dif-
ferent: the local search hypotheses use a significantly lower
percentage of random heuristics than the genetic algorithm
hypotheses, illustrating two different local maxima in the
search space.

New Millennium Space Technologies Four Landed Opera-
tions Domain– The ST-4 domain models the landed oper-
ations of a spacecraft designed to land on a comet and re-
turn a sample to earth. This model has 6 shared resources, 6
state variables, and 22 activity types. Resources and states
include battery level, bus power, communications, orbiter-
in-view, drill location, drill state, oven states for a primary
and backup oven state, camera state, and RAM. There are
two activity groups that correspond to different types of ex-
periments: mining and analyzing a sample, and taking a
picture. Each ST-4 problem instance includes a randomly
generated, fixed profile that represents communications vis-
ibility to the orbiting spacecraft. Each problem also in-
cludes between 1 and 11 mining activities and between 1
and 24 picture experiments at random start times.
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Figure 6: ST-4 model current iteration maximum and aver-
age scores for 30 genetic algorithm generations.

The preferences for ST-4 include more imaging, more
mining, higher average battery power, fewer drill move-
ments, and fewer uplinks.

Based on the Q-Q test, hypotheses from the ST-4 domain
are likely to be normally distributed, and thus provides a
good model for adaptive problem solving (Gratch & De-
Jong 1994). Graph 6 shows the mean and high scores of
the generated heuristic combinations over 25 cycles of the
search algorithms. The high score reaches a maximum im-
provement of14%, and the mean score has a maximum im-
provement of18%.

Related Work

Evaluating control strategies is a growing research topic.
Horvitz originally described a method for evaluating al-
gorithms based on a cost versus quality tradeoff (Horvitz
1988). Russell, Subramanian, and Parr used dynamic pro-
gramming to rationally select among a set of control strate-
gies by estimating utility (which includes cost) (Russellet
al. 1993). The MULTI-TAC system considers allk-wise
combinations of heuristics for solving a CSP in its evalu-
ation which also avoids problems with local maxima, but
at a large expense to the search (Minton 1996). Fink de-
scribes a method that sets time bounds for selection as
opposed to parameter estimation accuracy, since sampling
time is not large enough to attempt to minimize the num-
ber of samples (Fink 1998). Previous articles describing
adaptive problem solving have developed general meth-
ods have been developed for transforming a standard prob-
lem solver into an adaptive one(Gratch & DeJong 1992;
1996), illustrated the application of adaptive problem solv-
ing to real world scheduling problems (Gratch & DeJong
1996), and showed how adaptive problem solving can be
cast as a resource allocation problem (Gratch & DeJong
1994). We expand on these topics by evaluating different
methods for generating hypotheses which can be used in



adaptive problem solving to efficiently estimate their utility
and cost, considered separately.

Future Work
In the area of adaptive problem solving, additional work
has been proposed for the stopping criteria, which can be
resource bounded (specifically, time as a resource) instead
of a relaxation of the ranking requirement, as in previous
works on similar topics (Fink 1998). Different methods of
combining heuristics could be applied to problems of this
type. One method is composite strategies, from operations
research, which involve logical decisions about the rela-
tive usage of heuristics as opposed to statistical methods.
Another method is a portfolio approach, which combines
heuristics in a method similar to a financial portfolio.

Current results do not indicate any direct benefit to us-
ing either local beam search or genetic algorithms over
the alternative. In order to predict an effective search al-
gorithm for each environment, it would be useful to gen-
erate a landscape of the utilities for the hypothesis space
(Wolpert 1996), and choose the appropriate search al-
gorithm for the environment. Previous work has been
done in deterministic landscape generation (Wolpert 1996;
Whitley 1995), but no practical work has been done in
stochastic landscape generation, which is what this domain
requires.

Conclusions
This paper outlines different methods for adapting control
strategies using adaptive problem solving, with the goal of
finding a control strategy or set of control strategies that
performs well in the given planning and scheduling envi-
ronment. The purpose is validated in all three planning
and scheduling domains, by showing significant overall im-
provement in the generated plans. These results are signif-
icant in showing that autonomous spacecraft planning and
scheduling is becoming a realistic option for missions to
unknown environments.
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